The history of carbon fiber.

The 1950s 

In 1958, Roger Bacon accidentally produced the first petroleum-based carbon fibers when working for Union Carbide. Bacon was trying to measure the triple point of carbon. In the process of heating strands of rayon with argon, Bacon saw that carbon fiber filaments were starting to form in the arc furnace. 

While this process only produced fibers that were 20% carbon and did so in an extremely inefficient and cost-prohibitive way, this discovery set the development of carbon fiber in motion. Immediately after the discovery, the world caught on and started its own research into carbon fiber production.

The 1960s 

The ’60s saw significant developments in carbon fiber out of the U.S., Japan, and the U.K. Manufacturers in each country developed new production methods for carbon fiber with varying success. In the U.S., Bacon and Wesley Schalamon developed a new rayon-based production method called “hot-stretching,” which involved stretching rayon yarn while it was being heated to produce stronger fibers. 

Japan developed a carbon fiber production method that produced superior 55% carbon fibers from synthetic polyacrylonitrile (PAN). The U.K. also made major headway in carbon fiber production, ultimately resulting in new jet engine assemblies by Rolls Royce, which utilized carbon fiber compressor blades. These blades were short-lived, as they were vulnerable to bird impact. 

The 1970s and Beyond

In the ’70s, Union Carbide formed a joint technology agreement with Japanese companies, allowing them to work with PAN-based carbon fiber production methods. Afterward, PAN largely supplanted rayon as the primary material for carbon fiber production.

Since the ’70s, carbon fiber has seen massive growth and development. Carbon fiber yarns containing up to 95% carbon later hit the market, providing incredible tensile strength and elasticity. Manufacturing processes also improved, driving down production costs for carbon fiber materials. These factors led engineers in the 1990s and 2000s to dive even further into carbon fiber and its applications, resulting in the broad range of carbon fiber applications you see in today’s industries.

From www.iyrs.edu.